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I. INTRODUCTION 

The transverse coherent instability of multibunched beams has 

already been investigated by Courant and Sessleri (CS) in the special 

case of dipolar coherent oscillations and of resistive vacuum-chamber 

wall. 

The purpose of the present paper is to apply and to extend the 

results of the CS investigation to the NAL main ring. 

The first of our goals is to identify the unstablemodes of a beam 

circulating in the NAL main ring for the special case of zero betatron 

frequency spread. We shall deal with the special case of full beam in 

the main ring composed of M = iii3 bunches equally spaced and with 

equal particle numbers. 

The second step of our investigation is the computation of the - 

unstable modes growth time, still in absence of betatron frequency 

spread. 

Computation shows that almost all the unstable modes exhibit a 

growth time much less, or at least comparable to the acceleration 

period of 1.6 seconds in the main ring. Thus, almost all the unstable 

modes are dangerous too. 
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The last of our goals is the computation of the minimum betatron 

spread required to reduce to zero the growth time of the most unstable 

mode, i.e., of that mode with the smallest growth time in absence of 

spread. 

Our computation, which is based on the exact solution of the dis- 

persion relation, shows that the required frequency spread is much too 

sensitive to the tail length of the particle distribution, at least for the 

special case of the NAL main ring, so that it can be a problem to make 

a choice for the “minimum” required spread as we have not enough 

information about the particle distribution. Besides, the spread is 

depending on the (complex) beam-wall coupling factor with the effect to 

increase its uncertainty because of the uncertainty by which we can only 

compute the coupling factor. 

II. MAIN NOTATION 

R = radius of the bunch orbit 

L = bunch total length 

a = beam radius 

b = vacuum-chamber inner radius 

e = particle charge 

m0 = particle rest mass 

c = light velocity 

P = particle velocity to light velocity ratio 

Y = particle total energy to rest energy ratio 
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N = number of particles per bunch 

Oo = angular revolution frequency of the beam 

0 = conductivity of the wall material 

” = nominal betatron oscillations number per turn c 

III. BASIC THEORETICAL RESULTS 

The main result from the CS paper is a dispersion relation that 

can be written in the following way 

x,1 = 1, (1) 

where I is the following dispersion integral 

I= 
/ 

f (vs)dvs 

2 2 . (2) 
” -v 

S m 

f (vs) is the particle distribution function in the betatron wavelengths 

number per turn vs. This function is normalized in the following way 

/ f (vs)dvs = 1. 

” m appearing at the denominator of the integral (2) is the (complex) 

collective betatron wavelengths number per turn. Xm is one of the g 

bunch eigenvalues. 

As we are only interested in the special case of bunches with the 

same number of particles N and equally spaced, we show below the - 

expression for Am for this special case as derived from the CS paper. 

If the collective bunches oscillations are taken with the form 

exp ( ivmwot), (3) 
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we have 

A = 
N 

m 2 
fiG( 2r ‘-zm) -ivm& S4) 

mOYWO 

where 

U’ = (e2U/L) +$ W’ 
J- 

2 

W’ = e’WiZnR$ , 

and for circular geometry 

u=-; (,-$-$) 

(5) 

(6) 

(7) 

W= (2cp2/b3)/&. (8) 

The bunching function G( 2~r, x) has been investigated in more de - 

tails in the CS paper. It can be defined by the following series: 

-2nikx 
G(2s,x) = &f e ~ . 

k=l 

Here we want to mention a fundamental property of this function. 

It is periodic in x and its imaginary part is negative when x lies in the 

first half of one period (for example, between 0 and 1/Z), and positive 

when x lies in the second half (for example, between 112 and 1). 

The third term, in ‘;n, at the right-hand side of Eq. (4) is the con- 

tribution of the internal fields that one particle suffers by effect of the 

other particles in the same bunch. This term is usually very small. 
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As we expect v m to be not so much different from yc, the vs value 

of the particle distribution center, we replace, in the following, vm by 

” at the right-hand side of Eq. (4). 
C 

In the following we shall make use also of the notation 

v =v +a 
m c m’ 

where A m is the complex betatron wavelength number shift. We can 

split Am in its real and imaginary part, respectively Ar and A. 1 , and 
m m 

definitely assume 

1 AmI << vc. 

From Eq. (3) we see that the stability condition is 

Ai >O. 
m 

A simple case to solve is the following 

f(vs) = b(vs - Vc), 

where 6 (x) is the Dirac function. 

Insertion of Eq. (10) in Eq. (2) gives 

I= 1 
2 2’ 

” -V c m 

and if 1 AmI << v,“, 

A 

” =*v -i --=. 
m c 2v 

C 

(9) 

(10) 

As we want vrn to go to vc when X, moves to zero, we keep the 

upper sign at the right-hand side of Eq. (ii), and we eliminate the solu- 

tion with the lower sign. Thus we have 
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(12) 

and the stability condition is from Eq. (9), 

A. 1 
= imaginary part of Xm < 0. (13) 

m 

Thus if we neglect the internal forces term, and we consider only 

the case with M >> vc, we have, from the theorem about the sign of 

G (2n, x), that the modes with m satisfying the condition - 

m+v 
0.5 < M c < 1.0 (14) 

are unstable, and all the others with m outside the range Eq. (14) are - 

stable. 

The growth time, in absence of vs spread, of the unstable mode 

can be derived from Eq. (12). We have 

zv 
T =c. 
m w A. 

O lrn 

IV. APPLICATION TO THE NAL MAIN RING 

We have 

” = 20.25 
c 

M = 1113 , 

and we derive the unstable modes from Eq. ( 14). They are 

537 5 m 5 1092. 

(45) 
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If we take into account the imaginary quantity in vm at the right- 

hand side of Eq. (4), only a few modes close to m = 537 are converted 

in stable modes. 

In the following we split X, in its real, X r ’ and imaginary, 
m 

Xi , part. We want to compute Xi , X r , and the growth time TV, in 
m m m, 

absence of betatron spread, for the unstable modes in the NAL main 

ring. For this purpose we take the following numbers: 

y = 10.0 

p = 2.0 

a = 0.5 cm 

b = 2.0 cm 

(T = 1017 s-1 

L = 100.0 cm 

R = 1000.0 m 

N = 4.2 X 10” 

M = 1113 

v = 20.25, 
c 

The results are shown in Table I below. 

‘i 
increases and X 

r 
and rm decrease steadily when the mode 

m m 

number m runs from 539 up to 1092. - 

The first two modes, m = 537 and 538, are stable when the internal 

forces are taken into account. The modes m ? 539 are unstable even 

taking them into account. 
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Table I. Coupling Factors and Growth Time Vs Mode Number. 

x 
r ‘i 

m In 7 m m 

537 

I 
stable, taking into account internal forces 

538 

539 -4.73 1.58 X 1O-5 8.5 set 

540 -4.73 4.35 x 1o-5 3.1 set 

1091 -4.60 0.150 0.9 msec 

1092 -4.54 0.229 0.6 msec 

Practically all the modes are dangerous because except for the 

very first few at the low limit, they exhibit a growth time T 
m much less, 

or less, or comparable to the acceleration period which is of 1.6 seconds. 

The most dangerous mode is m = 1092 with a growth time of about 

half a millisecond. It should be remembered that the designed synch- 

rotron oscillation period in the NAL main ring is about 10 milliseconds. 

Thus only a few of the modes, and the higher ones, have a growth 

time smaller than the synchrotron oscillation period, T. The others 

exhibit a growth time either comparable to T or much longer than T, 

and hence, the CS theory used here cannot be rigorously supposed valid 

for them, as the particle motion within the bunches has been neglected 
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It is soon seen from the Table I as Xr changes weakly, whereas 
m 

‘i 
is well sensitive to the mode number m. Besides, the ratio 

*i~‘Ihr I is very small for any of the unstable mode and has a maxi- 
m 

mum of about 0.05 at the mode m = 1092. 

We want now to discuss the computation accuracy of h 
r ,li > 

m m 
and hence, of T m’ 

The dispersion relation Eq. (1) relates together the real and the 

imaginary betatron shifts, respectively Ar and A. 
1 , the nominal 

m m 
betatron number I.‘~, the real and the imaginary form factors, respec- 

tively, Xr and h. 1 a and two quantities, 6 and n, characteristic of the 
m m 

particle distribution function f(vs). 6 and n will be described in the 

next sections; here, it is sufficient to say that 6 is a measure of the 

function width, and hence, of the betatron spread within the beam, and 

n is a measure of the particle concentration around the center vs = vc, 

and hence, of the distribution tail length. 

The dispersion relation Eq. (1) takes then a general form like the 

following: 

H (Xr > Xi , vc. A r , Ai > 6, T)) = 0. (17) 
m m m m 

A special case that will be discussed deeply in the next section is 

Ai + 0-, which is told also “at the limit of stability. ” In this case, 
m 

A. 1 
is dropped at the left hand side of Eq. (17), and we should be able 

m 
to solve for the minimum spread bA, + O- = bm, obtaining 

1 m 
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6 
m = K (hr , Xi > vc> n). (48) 

m m 

Since Eq. (17) is a complex relation, it can be split in two real relations, 

one of which can be used to solve for A r ’ This is the reason for which 
m 

A 
r also has been dropped in Eq. (18). 

m 
Thus, keeping vc and n fixed, the spread 6m is related to Xr 

m 
andX. . 

1 
Any inaccuracy by which we know X and X. r 

m 1 
is unavoidably 

m m 
transferred in an inaccuracy for hrn. 

We calculated Xr and X. 
1 by using the ten parameters listed in 

m m 
Eq. (16). The last four (R, M, N, and vc) are sure parameters; we 

know them with high accuracy. We did not observe any change of h r 
m 

and Xi listed in the Table I when we moved vc down and up around 
m 

20.25. y and p also are sure parameters, but they change with the time. 

Nevertheless, the beam in the main ring is always so relativistic that 

our assumption (3 = 1 should not affect our results. v changes from 10 

at the injection up to 210 at the acceleration top. We referred to v = 10 

to have the maxima of Xr and A. 
1 ’ as we know from Eq. (4), that Xr 

-3 m -1 m m 
goes like y and A. 

1 like y . If we fix our attention for the moment 

to the mode m = $092: we have that ki / 1 Xr 1 is 0.05 at JJ = 10, 1 at v 
m m 

= 45, and 22 at the top y = 210. 

The remaining four parameters (a, b, L, and a) are not sure 

parameters. We believe that the cylindric model can well be applied to 

the NAL main-ring case provided the equivalent radii a and b can be - - 
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guessed. We observe that X. 1 is sensitive only on b and not on a. 
m 

Unfortunately, the dependence on b is of cubic power, so that if we 

double k, Xi is affected by a factor of 8 (!). 
m 

‘r 
is sensitive on both 5 and b, as one can see from Eq. (7), 

m 
but as generally 5 is much smaller than h, we can expect a stronger 

dependence on 2 than on b. - 

Also, L and ocean be only inaccurately guessed. The vacuum- 

chamber steel has a well known conductivity cst, but other conductors 

and insulators are located around the ring circumference resulting in 

an averaged conductivity othat we can hardly measure. The bunch 

length L is a function of the time which is still to be fixed. 

Fortunately, Xi has no L-dependence and is weakly sensitive on 
m 

o, as only the square root enters the denominator of its expression [ see 

Eqs. (4) to (S)] 

Thus, since it depends only on X,. 
‘m[ 

see Eq. ( i 5) 1, the growth 

time 7m depends only on y, CJ and b according to 

7 
m - constant x (yb3 fi), 

where a and L do not appear. 

A 
r 

can be split in three terms as it follows, 
m 

x - -c1+ c2 +A- 
r m Y3L Y m Y Jr 

(49) 
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where c2 and c3 have a b -3 dependence, and cf a combined dependence 

on 5 and b as given by Eq. (7). 

For perfectly conductive material (o .+ m ), the second and third 

terms drop and Xr is given only by the first term. For L = 100 cm 

and cr= iOi7 s-f, m the last two terms contribute in the total only in the 

measure of 5%. In order to change appreciably X 
r ’ 

o should go down 

considerably. For instance, hr 
mi5 s-1 

is halved at o = 10 . Thus we 
m 

can neglect the last two terms at the right-hand side of Eq. (l9) for low 

y values, although they can contribute appreciably at higher energy. 

In the following it can be useful to refer to the coupling factor em 

per particle defined as follows: 

(Y 
m = Am/N. (20) 

Obviously (Y 
m 

can be split in its rea1 and imaginary parts 

(Y =C! +icu. . 
m r 1 m m 

It is soon seen from Eq. (4) that (Ye and CI. 
1 are not depending on N. 

m m 

V. THE DISPERSION RELATION 

We state the following: 

a. f (vs) is zero anywhere except in a region around vs = vc between 

Y c-c 
and vc + 5 . It is symmetric around vs = vc. 

b. The total spread, 2 6, of the distribution is defined by taking 

the total width of f(v,) at half of its maximum. 

c. 6 is a very small quantity with respect to vc. 
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d. The collective betatron number v can be written in the m 

following way 

” =v +A 
In c m’ 

where A m is a complex quantity whose real part Ar is supposed to be 
m 

much smaller than v A 
c’ I- 

is expected to have the same order of 
m 

magnitude of 6 or larger. 

e. The imaginary part, A. , of the v-shift Am can take, in 
1 
m 

principle, any value. Nevertheless, since we want to calculate the 

minimum spread 6 = 6 
m for the instability compensation at the limit 

of stability, we take A. as a very small and negative quantity. The 1 
m 

dispersion integral I can be easily split in two integrals 

1 
1 

f(vJ 1 
I=r dv -- 

f(v,) 
dv v -v S 2v J v +v m’ m s m m s m 

For the assumptions stated above, the second integral can be neglected 

as it contributes only weakly to I. 

Thus, we have from Eq. ( 1) 

kl .v,+’ f(vJ - 
2v J dv =1. v -v S c s m 

vc-5 

We replaced ‘;n by vc in the factor outside the integral. That is 

certainly a good approximation for the statements d and e. We shall 

replace vm by v 
C 

also in the expression for-X 
m’ 
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Changing the integral variable with 

v -v 
s c x = 

S 6 

and setting 

A 
x E-m% 

m 6 ’ 

we have 

A +E gbs) 
m J x -X 

dxs = 1 
S m 

-E 

with 

FN-217 
0401 

and g(x) = 6 f(vs) is the new scaled distribution function normalized to 

unit. It is required that the function g(x) is chosen in such a way that 

g (*I) =; g(0). 

We split x m and 11~ m in their real and imaginary parts 

x -2-L + ix. 
m r 1 m m 

A m = Arm + iAim, 

and we operate the limit 

x. -0, 1 
m 

so that we obtain from Eq. (21) 
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(*r + i Ai ) (Fr +iFi )=I, 
m m m m 

where 

F, = 

-$ 
fCg(Xs) 

x -X dxs. 
m S r 

m 

and 

F. = -“g (Xr ), for 1 xr <E 
1 m m m 

= 0, for Ix r I>E. 
m 

(23) 

(24) 

(25) 

We observe soon that F, and F. 1 are only functions of the 

running parameter x r 
(and o?the integal limit E , but this is only an 

m 
artificial parameter). All the other quantities, vc, the minimum spread 

6 m for compensation and the coupling factor X,, enter Ar and A. . 1 
m m 

From Eq. (23) we have, at last, 

Fr - i F. 1 
A +iA = m2 m 

r i 2 (26) 
m m F + F. r 1 

m m 

The above equation is the conformal mapping of the curve xi = cy in the 
m 

plane (xr , xi ) to the plane (Ar , Ai ) for the special case cy - O-. 
m m m m 

That results in a curve I? in the plane (Ar , hi ) with xr as running 
m m m 

parameter. The curve r bounds a region which can be called the 

“stable region”. In fact, all the experimental points of coordinates 

A and A, r 1 
falling inside represent stable beam oscillations. The 

m m 
points on the curve show the limit of stability. 
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The mapping depends upon the choice of the distribution function 

g (x) that, for this reason, can be called the “generatrix function. ” 

In the next section we draw down conformal mapping Eq. (26) for 

several generatrix functions, g (x). 

Here, we conclude by observing that the half-plane Ai < 0 is 
m 

certainly a stable region as any point inside has X. < 0 which corres- 
1 
m 

ponds to the stability condition. Besides, we see from Eq. (25) and 

Eq. (26) that A~i is a positive quantity or zero, whereas A has the r 
m m 

opposite sign of -x 
m’ 

Thus the boundary curve I’ is symmetric with 

respect to the axis A r 
= 0 and lies surely in the upper half-plane, 

m 
corresponding to Ai > 0, with the effect to widen up the stable region. 

m 

VI. THE EFFECT OF THE DISTRIBUTION TAILS 

We want here to investigate the effect of the particle distribution 

tails. 

For this purpose we shall make use of several “generatrix function” 

g (x) in the integral (21). A simple way to measure the tail length of the 

distribution is to calculate the quantity 

which gives the relative number of particles inside the width of the dis- 

tribution. When n approaches 1, the tails vanish, and they appear and 

stretch as r) decreases to zero. 
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As g (x) is normalized to unit and symmetric to x, we cannot 

expect n less than 0.5, corresponding to a Lore&z distribution. 

The “generatrix functions” g (x), used in our investigation are 

tabulated in Table II. 

We prepared a computer program for the numerical calculation 

of the Cauchy principal value of the integral (24), and we drew down the 

conformal mapping Eq. (25) for each of the functions in Table II. The 

results of the mapping are shown in Fig. 1. 

The straight line parallel to the A 
r 

axis and crossing the A. 
1 m m 

axis at A. 
1 

= 1 is the boundary curve I’ for a Lorentz function which 
m 

has the smallest value of n (=0.5). The next curve met moving down 

corresponds to the gauss function with a higher n (=0.76). The most 

inside curve, which hence bounds the less wide stable region, corres- 

ponds to the second order parabola function with the largest n (=0.886) 

we considered. Each curve is marked by an integer number for iden- 

tification. These numbers are listed in the last column of Table II. 

One important result is the following. The distribution with 

larger tails yields to wider stable region containing entirely any other 

stable region corresponding to distributions with shorter tails. 

All the functions in Table II have the property to be continuous at 

any x. We considered also the rectangular distribution function which 

does not hold this property and thus cannot be rigorously inserted in the 

group. 
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The dashed curve in Fig. 1 corresponds to the rectangular function. 

The fact that now the curve is closed at the origin of the (Ar , Ai ) 
m m 

plane is to be indebted just to the discontinuities at the two sides of the 

function. 

If we know the coupling factor per unit length ‘Ye, Eq. (ZO), the 

number of particles within a bunch, N, and the v spread, 6, within the 

beam, we can calculate A and A. 
r 1 for a practice case. We could, 

m m 
then, observe whether the point of coordinate (A 

r ’ Ai ) is below or 
m m 

above one of the boundary curves in Fig. 1, and thus state if the beam 

is stable or unstable. 

We wish to suggest a different method. We rewrite Am, Eq. (ZZ), 

in the following way: 

cy 

Am = e 

I 

(6m/NL 
C 

where we introduced the minimum spread per particle, dm/N, required 

for the beam compensation. We want to compute 6 m/N. For this pur- 

pose we observe that the ratio Ar /A, is constant for a practice case 
m m 

and is given by 

nr a x 
r r 

m m 
A 

=- :m . 

i @. x 
1 i 

m m m 

Then we show in Fig. 1 a straight line passing the origin and with 

angular coefficient equal to the ratio (27). 

(27) 
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The running parameter over the straight line is now 6 m/N. 

Changing Sm/N we move simply the experimental point along the straight 

line. 

The coordinates of the point at the intersection between the ex- - 

perimental straight line and one boundary curve r can be used to cal- 

culate EJ~/N if we know LY . m 

We used this method for the computation of hm/N in the NAL 

main ring. The results are shown in Fig. 2. We have q in theabscissa, 

and the minimum half spread per particle, normalized to (Y. /Zv 1 c, in 
m 

the ordinate. We see three curves corresponding to different ratios 

Qi hr I. The computed points are shown by the thick points. The 
m m 

plot is universal and can be applied to any practice case. 

For the special case of the NAL main ring we take 

ai /IcyI. / = 0.05, 
m m 

and thus we see that bm/N should range in the following interval 

(Y. 
6 

Q. 
1 1 

--z < 
2v 

=< 70--m 
N 2V ’ 

c C 

as n changes from 0.5 to 1. 

This gives, for the designed number of particles per bunch 

N = 4.2 X IO”, the minimum total spread 

0.01 < 2b < 0.8 
m 

which is really a large range! 
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But if we take into consideration a Gaussian particle distribution 

(which is not at all unphysical), we would obtain 

26 - 0.1 . 
m 

The same operation for the computation of 6m/N can be used to 

determine the real betatron shift x1. . The results are shown in Fig. 3. 
m 

Also, here we have three curves corresponding to different ratios 

ai hr I . 
m m 

We observe that for distributions with long tails, it results in a 

real betatron shift A 
r 

of several times the half-spread d 
m m’ 
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Table II. Distribution Functions and Their Tail Coefficients, 

Name 

Lorentz 

Gauss 

Parabola n = 5 

Parabola n = 4 

Parabola n = 3 

Squared cosine 

Parabola n = 2 

Truncated cosine 

Parabola n = 1 

P(X) 
1 /n(i+x2) 

~exp(-x21g2) 

An (i -~n2x2)na 

i 
1 
- cos2 (?rx/4) 2 

- - - - _ _ 

-----_ 

aFor the parabola functions it is 

An = cy (Zn+l)! 

“2 Zn+l (J 

E .LL- 
co 0.500 

m 0.76 

0.795 

II@ a 0.802 
n 

0.812 

2 0.818 

1 /a2 a 0.835 

312 0.866 

1 IDI a 0.886 

Curve 
No. 
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